This research is supported by Award #1542465:
RET Site: Cyber Security Initiative for Nevada Teachers (CSINT)

Hands-on Activity 1

Hashing:

A hash value is a numeric value of a fixed length that uniquely identifies data. Hash values represent
large amounts of data as much smaller numeric values, so they are used with digital signatures. You can
sign a hash value more efficiently than signing the larger value.

Here are the most common Hash Algorithms (though there are more)
* MD-5 (Message Digest 5 - 32 characters)
* SHA-1 (Secure Hash Algorithm - 40 characters)
* SHA-256 (Secure Hash Algorithm - 64 characters)

1) Artifacts can be compared using their HASH values.

2) If two (or more) documents, graphics, (artifacts) look similar when viewed , but when Hashed,
their HASH values are different, then are they identical?

3) They are not the same file (a single bit difference could cause this).

4) But will the courts “still say” they are “ A reasonable representation of each other?”

Activity:

Open notepad and create the following text files.

File Name Contents

textl.txt “the quick brown fox jumped over the lazy dogs back”

text2.txt “THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS BACK”
(typed in all caps)

text3.txt “the quick brown fox jumped over the lazy dogs back ”
(spaces added at end of sentence).

text4.txt “The quick brown fox jumped over the lazy dogs back”
(first letter of the first word in upper case).

Text4 renamed.txt | “The quick brown fox jumped over the lazy dogs back”
File renamed and saved text4.txt to test4 renamed.txt

Tools:
There are numerous applications that can calculate hash values. We used HashMyFiles which can be
downloaded at https://www.nirsoft.net/utils/hashmyfiles-x64.zip

https://www.nirsoft.net/utils/hashmyfiles-x64.zip

Hands-on Activity 2

Event Logs:
For introduction and activty see Event Log Slides(eventlogs.pdf)

Tools:
Windows Event Viewer which can be found by clicking the start button and search for event viewer.

Hand-on Activity 3(referenced from
https://hshrzd.wordpress.com/2016/03/19/introduction-to-
ads-alternate-data-streams/)

Alternate Data Streams

Introduction

In FAT file system — used by old versions of windows — file consisted of 2 elements: attributes and
data.

In NTFS it is different — file consists of attributes, security settings, main stream and alternate streams.
By default, only the main stream is visible.

Activity

Let’s see how it works by creating a sample file: test.txt. At this moment it’s main stream will be
empty. However, we will create an alternte data stream. We can write into it using echo command and
simple stream redirection.

Naming convention:

[filename.extension]:[alternate_stream_name]

optionally we can use ::$DATA at the end, i.e:
[filename.extension]:[alternate_stream_name]::$DATA

C:slzersstesterecho This message is saved in the ADS > test.txt:ihidden_stream

echo This message is saved in the ADS > test.txt:hidden_stream
Let’s list the directory and see the newly created file (test.txt)

C:sUsersstester>dir
Uolume in drive C has no lahel.
Volume Serial Humber is 448D-3B2B

Directory of C:sUsersstester

2016-A3-18 419:=414i <DIR> -
2016-83-18 19:11 <DIR> .-
2015-86-B5 17:28 225 288 baretail.exe
2015-86-18 21:24 <DIR> Contacts
2016-A3-14 16:58 <DIR> Desktop
2015-87-22 12:38 <DIR> Documents
2015-A7-22 1B8:52 <DIR> Downloads
2015-86-18 21:27 <DIR> Favorites
2015-A6-18 21:24 <DIR> Links
2015-86-18 21:24 <DIR> Music
2015-A6-18 21:24 <DIR> Pictures
2015-86-18 21:24 <DIR> Saved Games
2015-A6-18 21:24 <DIR> Searches
17:11 B test._.txt
21:24 <DIR> Uideos
2 File<s> 225 288 hytes
13 Dir<s> 13 883 @52 832 hytes free

dir
As we can notice, the file length is displayed as 0 bytes. If we try to open this file by some text editor
(i.e notepad) we can see that it is empty. Does it really have something inside? Let’s confirm:

“Uzersstesterimore < test.txt:ihidden_stream
Thiz message iz saved in the ADS

more < test.txt:hidden_stream
Now, finally, our text showed up.

So, how we will find out what are the alternate data streams available in particular files? There are
several tools dedicated to reading and editing ADS, but if we don’t want to bother about it, we can just
use a command dir, with an appropriate parameter:

C:xlUzersstester>dir ~7
Dizplays a list of files and subdirectories in a directory.

DIR [drive:]Ipathllfilenamel] [AALL:lattributes1] [-B]1 [-C1 [-D]1 L[-L]1 L[-H]1
[-0LL:1sortorder]] [-P1 [-Q1 [/R]1 [+5]1 [/TILL[:1timefieldl] L[-W]1 L[-X1 L[r41]

[drive:llpathllfilename]
Specifies drive, directory, andsor files to list.

Y] Diszplays files with specified attributes.

attributes I Directories R Read-only files
H Hidden files A Files ready for archiving
% Sysztem files I Hot content indexed files
L. Reparse Points — Prefix meaning not

B Uses hare format (no heading information or summary).

Y Dizplay the thowusand separator in file sizes. This iz the
default. Use ~-C to disahle display of separator.

) Same asz wide but files are list sorted by colunmn.

L Uzez lowercase.

M Mew long list format where filenames are on the far right.

S0 List hy files in sorted order.

sortorder M By name <alphabhetic? % By zize (zmallest first>
E By extension (alphabhetic> D By datestime C(oldest first)>
G Group directories first — Prefix to reverse order

P Pauzez after each screenful of information.

~Q Display the owner of the file.

R Dizplay alternate data streams of the file.

dir /R — display alternate data streams of the file

C:sUzersstesterxdir Ap»
Uolume in drive C has no label.
Uolume Serial Mumbher is 448D-3BZ2B

Directory of C:sllzersstester

2016-83-18 19:11 <DIR> .
2016-83-18 19:141 <DIR> .-
2015-86—685 17:28 225 288 baretail.exe
2015-86-18 21:24 <DIR> Contacts
2016-83-14 16:58 <DIR> Desktop
2815-87-22 12:38 <DIR> Documents
2015-87-22 1@:52 <DIR> Downloads
2015-86-18 21:27 <DIR> Favorites
2015-86—-18 21:24 <DIR> Links
2015-86-18 21:24 <DIR> Music
2015-86—-18 21:24 <DIR> Pictures
2015-86-18 21:24 <DIR> Saved Games
2015-86—18 21:24 <DIR> Searches
20168318 19:29 B test.txt
35 test.txt:hidden_stream:5DATA

2015-86-18 21:24 <DIR> Videos

2 File<s> 225 288 hytes

13 Dirds> 13 883 B64 326 hytes free

Now we can see the same file, test.txt, listed twice: once with a size 0, and then again — with the size
35, with the ADS name added.

We can edit the file in a normal way, and the alternative stream will stay untouched. By the same way
we can create several streams.

C:sllsersstesterdmore 4 test.txtihidden_stream
Thiz message iz saved in the ADS

C:sllsersstesterimore € test.txt
Thiz iz a main stream

File in file using ADS
Example 1

We can also hide another file on the alternate data stream. On the below example — we create a new txt
file on another. We can then edit it with typical tools:

:slsersstesterecho Hidden text » test.txt:ihiddenl.txt

tslzersstesternotepad test.txtihiddend .txt

test.betthiddenl bt - MNotepad

File Edit Format View Help
Hidden text

Yet, opening the file by default way, we can only see it’s main stream:

test.but

test.bxt - Notepad

File Edit Format View Help
This is a main stream

Example 2

We can also paste an existing file on an alternate data stream, by using a command type

Let’s take as an example a demo.dll — it is a 32bit Portable Executable, exporting one function: Test1.

We will place it in the alternate stream of test.txt

C:slUzsersstesterdtype demo.dll > test.txt:demo

type demo.dll > test.txt:demo

Maybe the alternate stream it is hard to notice — but running it is still very easy:

C:sUzsersstestermore test.txt
Thiz is a main stream

CisUzersstesterxdir
Uolume in drive C has no label.
Uolume Serdial Mumber iz 448D-3BZB

Directory of C:isllzersstester

2A16—B83-18 2Z20:83 <DIR> .
2@8:88 <DIR> ..
17:28 225 288 bharetail.exe
21:24 <DIR> Contacts
2016—8@3-18 20:84 4 833 demo.dll
2@016-83-14 16:58 <DIR> Desktop
2015-87-22 12:38 <DIR> Documents
1A:52 <DIR> Downloads
21:2% <DIR> Favorites
24:24 <DIR> Links
21:24 <DIR> Music
21:24 <DIR> Pictures
21:24 <DIR> Saved Games
21:24 <DIR> Searches
2016—83-18 28:14 21 test.txt
2015-86—-18 21:24 <DIR> UVideos
3 File<s> 238 134 hutes
13 Diwds>» 13 832 3383 192 bytes free

C:sUzsersstesterrundl132 test.txt:demo,.Testl

rundll32 test.txt:demo, Test1

Example 3
Exactly the same can be done with (malicious) macros:

type malware.vbs > readme.txt:malware.vbs

hasherezade's Demo DLL @

Demo DLL loaded

https://github.com/hasherezade/snippets/tree/master/demo_dll

Wscript readme.txt:malware.vbs

Zone.Identifier

One of the legitimate usages of alternate data streams is Zone.Identifier. It is a feature used to identify
the file origin. In case if the file comes from some untrusted source, i.e. have been downloaded from
the internet, Windows displays a security warning before it can be run.

There are several variants of Zone.Identifier value:

0 My Computer

1 Local Intranet Zone
2 Trusted sites Zone

3 Internet Zone

4 Restricted Sites Zone

file.exe:Zone.Identifier

Sample content of Zone.Identifier of the file downloaded from the internet:

[ZoneTransfer]
Zoneld=3

Malware downloaders may edit Zone.Identifier of the downloaded file, in order to make it run without
displaying alert.

ADS and PowerShell

PowerShell comes with a built-in feature to read ADS. There are several commands that can be used to
read and edit them:

* Get-Item

* Set-Item

* Remove-Item
* Add-Content
* Get-Content

* Set-Content

Examples
Listing all the streams of a file:

Get-Item -Path [filename] -Stream *

Adding hidden message into ADS:

Add-Content -Path [filename] -Value [my hidden message] -Stream [new_stream]

Cheatsheet

Creating ADS from commandline:

echo This is a hidden message > testfile.txt:hidden_stream

Displaying files with their alternative data streams:

dir /r

Displaying stream of a file:

more < testfile.txt:hidden_stream::$DATA

Tools:
Windows command prompt, notepad, and powershell.

Hands-on Activity 4
Log Parsing
For log parsing I just have the students work through the tutorial located at

https://www.linkedin.com/pulse/7-log-analysis-techniques-digital-forensics-incident-sverdlov/

I figure that it explains the process fairly well. Below I have included the method utilizing both
Mandiant Highlighter and Notepad++(Note Mandiant does require registration to download, but I do
believe it is still free).

Logs can be huge — and analyzing a 500MB or even a 1-2 GB log file can quickly get daunting and
tiring. Going through such a file to find a single instance of the right command which got your server
compromised could be an all-nighter. Let’s make it 15-45 min., shall we?

Let’s first set up our task:

Head over to https://honeynet.org/challenges/2010 5 log mysteries and download some logs.
Specifically, the file located at https://honeynet.org/sites/default/files/files/sanitized log.zip . Following

the challenge, we will complete it in several programs utilizing a few useful filtering techniques. If you
disagree with me or have suggestions, feel free to post them in the contact form on my website — I will
be happy to amend my article or reply with my thoughts.

Extract the archive and look around.

https://honeynet.org/sites/default/files/files/sanitized_log.zip
https://honeynet.org/challenges/2010_5_log_mysteries
https://www.linkedin.com/pulse/7-log-analysis-techniques-digital-forensics-incident-sverdlov/

Fa

Mame Date modified Type Size

apached 03/07/201011:29 ... File folder

apt 03/07/201011:01 ... File folder

fsck 16/03/201007:58 ... File folder
E{ auth.log 03/07/2010 153 ... LOG File 10,086 KB
Qf’ daesmeon.log 03/07/201011:06 ... LOG File 113 KB
ﬂ debug 03/07/2010 10652 ... File 223 KB
| | dmesg 02/05/2010 11:05 ... File 35 KB
.j dmesg.0 28/04/201007:34 ... OFile 36 KB
E’f dpkg.log 26/04/201004:53 ... LOG File 94 KB
[fontconfig.log 24/04/201007:27 ... LOG File 1 KB
Qf’ kern.log 03/07/2010 1057 ... LOG File 2422 KB
| | meszages 02/05/2010 11:07 ... File T2 KB
d SECUre 25/04/201010:42 ... File 0 KB
ﬂ udev 02/05/201011:05 ... File 352 KB
Qf user.log 18/03/201010:13 ... LOG File 1 KB

From the list we could see immediately the log which could interest us — auth.log
Our objective will be to answer the challenge’s questions with the programs below.

For our exercise, we will need:

1. Notepad++
2. LogExpert

1. Quick Filtering with Mandiant Highlighter

I hope Mandiant (FireEye) keeps this tool, if not updated (gosh, they have not updated it in ages!), at
least online for long enough for a sane developer to develop something modern and at least as useful
and much more stable. From the frequent crashes I’ve experienced with it I would only recommend it
for files less than 100MB in size. Anything bigger and some complex tasks simply kill the program.
Yes, it can open huge files — but opening is one thing, complex filtering is another.

https://logexpert.codeplex.com/
https://notepad-plus-plus.org/

® MANDIANT Highlighter 1.1.3 - auth.log - O x

File Help Keywon:l [Cumulative | Case Insensitive w| 3 Highlight

Apr 24 13:03:14 app-1 sshd| pam unix(sshd:auth): check pass; user unknown ~
Apr 24 13:03:14 app-1 sshd] ?: pam_un_xtsshd auth) : authentication failure; logname= uid=0 euid=0 tty=
BApr 24 13:03:16 app-1 sshd[]: Failed password for invalid user temp from 8.12.45.242 port 33370 ssh2
Apr 24 13:03:16 app-1 sshd[]: Invalid user carla from 8.12.45.242

Apr 24 13:03:16 app-1 sshd] 1: pam_unix(sshd:auth): check pass; user unknown

BApr 24 13:03:16 app-1 sshd[]1: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=
13:03:18 app-1 sshdf]: Failed password for invalid user carla from 8.12.45.242 port 34065 ssh2
13:03:18 app-1 sshd]]z Invalid user laura from 8.12.45.242

13:03:18 app-1 sshdf 1: pam_unix(sshd:auth): check pass; user unknown

13:03:18 app-1 sshdf 1: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=
13:03:20 app-1 sshd]]: Failed password for invalid user laura from 8.12.45.242 port 34716 s=ssh2
13:03:21 app-1 sshdf]: Invalid user joana from 8.12.45.242

24 13:03:21 app-1 =sshd] 1: pam_unix(sshd:auth): check pass; user unknown

24 13:03:21 app-1 sshd[]: pam unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=
24 13:03:23 app-1 sshd] : Failed password for invalid user joana from 8.12.45.242 port 35479 ssh2
24 13:03:23 app-1 =sshd] 1]: Invalid user isabel from 8.12.45.242

13:03:23 app-1 sshdf| 1]: pam_unix(sshd:auth): check pass; user unknown

13:03:23 app-1 sshd] 1]: pam unix(sshd:auth}: authentication failure; logname= uid=0 euid=0 tty=
13:03:25 app-1 sshdf 1]: Failed password for invalid user isabel from 8.12.45.242 port 36175 ssh
13:03:25 app-1 sshdf| 3]: Invalid user antonio from 8.12.45.242

13:03:25 app-1 sshdf 3]: pam_unix(sshd:auth): check pass; user unknown

13:03:25 app-1 sshd] 1: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=

oo

i)

(= Y= RT - RT= RS RS |

W

L1 n o nonotnonoLnononoLnononon N notn N NN nononognonon
B3 BB B B OB B B OB B B B B OB B B OB B B OB B B OB B BB
M M M v v O NN nononoenon U'!

[oS I S T S I o T o8 .[\1 {5 T oS T oS o T oS T o oS T oS I 8 I[\) BB B B OB B BB I[\) [\1

24 13:03:26 app-1 sshd] 3]: Failed password for invalid user antonio from 8.12.45.242 port 36801 ss
24 13:03:27 app-1 sshd] 5]: Imvalid user dawvid from 8.12.45.242 T oo
24 13:03:27 app-1 sshd] 5]: pam_unix(sshd:auth): check pass; user unknown Start End Litics
13:03:27 app-1 sshd] 5]1: pam unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=w - GO
- = o 102165 | | 102165
Mo Highlights 102165 displayed (0 hidden). 102165 lines, longest is nurmber 450. Deliriter: (not set)

On opening the auth.log file with Highlighter we see it contains 102165 lines. Not realistic for reading
the whole thing, so let’s get rid of the lines we don’t want to see.

We accomplish this by glancing over the file, scrolling from top to bottom and noting any lines which
are frequent and useless at the same time. For example, we would be interested statistically in what
usernames were attempted to login to ssh, but if they were invalid they pose no interest to us. So we
could search for “Invalid user“, select the 2 words, right-click and select “Remove” which would
remove all lines containing them. This removes roughly 13 000 lines, or more than 10%. We can do the
same for “Failed password for invalid user”, ” authentication failure”, (so far 50% of the log file has
been filtered out), “user unknown”, “check pass; user unknow”, “Failed password for root from*,

” Failed password for”, ” session closed for user” (because we might not be interested in logouts as
much as in logins, right?). Even so, we see a line containing “session opened for user root” — and we
might be more interested in “Accepted password”, instead — so we remove even the session opened
lines.

One more string to remove is “POSSIBLE BREAK-IN ATTEMPT!” — this alert sounds scary but is not
very helpful in identifying actual breaches, unless we see a successful login attempt from the same IP
later on (which is a part of a deeper statistical analysis).

2. We are left with a whopping 1747 lines!

All that in just a few seconds of filtering. Neat, especially knowing that we can reclaim any lines
removed from the GUI (right click, Line operations — reclaim lines previously removed).

The remaining line allow us to build a timeline of events and the commands used to compromise the
server and answer all questions in the challenge above.

That is with just one function of Highlighter — “Remove”! Let’s not forget we can highlight different
things with different colors to make our analysis easier:

For example, we see a lot of instances of commands and actions from “user1”. We go to Keyword,
enter user 1, select “cumulative”, “Case insensitive”, change the color to a distinctive one, press

“Highlight”, voila!

Keyword: |user‘| | Cumulative | Case Insensitive « | 3% | Highlight

:00 app-1 su[20235]: 4+ ??? root:inobody

:00 app-1 su[20235]: pam unix(su:session): session opened for u
:53 app-1 ss3hd[21426]: Accepted password for from 76.191.
153 app-1 sshd[21428]: pam unix(sshd:session): session opened §
:12 app-1 sudo: : TTY=pta/0 ; PWD=/opt/software/web/app.
:07 app-1 sshd[21494]: Accepted password for userd from 10.0.1.
app—-1 sshd[21496]: pam unix(sshd:session): session opened §
app-1 sudo: user3 : TTY=pts/2 ; PWD=/root/.3sh ; USER=r
app-1 su[21524]: Successful su for root by root

app-1 su[21524]: + pts/2 root:root

app-1 passwd[215553] ¢ pam unix(passwd:chauthtok): password cl
app-1 sshd[21556] : Accepted password for root from 10.0.1.2
app-1 =sshd[21556]: subsystem reguest for sftp

app-1 sudo: zerl| : TTY=pts/0 ; PWD=/opt/software/web/app.
app-1 sudo: zerl| : TTY=pts/0 ; PWD=/opt/software/web/app.
app-1 sudo: zerl| : TTY=pts/0 ; PWD=/opt/software/web/app.

app-1 sudo: zerl| : TTY=pts/0 ; PWD=/opt/software/web/app.

L]
tn tnoen =l

B BB OB

[n%]

H
=

Lo I e % 8
o mm
m

[
[
H
[

L Tl T T I e i
O o G BE EF

[
tn

m

We can do the same for “Successful su for nobody by root”, “Successful su for www-data by root”,
“Successful su for www-data by root” (3 hits), “Accepted password” (with a RED color and we found
118 hits), rinse and repeat for all strings which pose interest and would help us solve the puzzle.

The final window should look something like:

™ MANDIANT Highlighter 1.1.3 - auth.log
File Help Keyword Acc:epted password . Cumulative | Case Insensitive sl EB Highlight

100006iApT 26 06:25: app-1 sudo: pam unix(sudo:session): session opened for user user3 by (uid=0)
100078 iApr 26 06:53:33 app-1 su[21701]: ﬁuccessflu su for nobody by Ioot]

10 g :39 app-1 su[21701]: + 22? root:i:nobody

139 app-1 su[21701]: pam unix(su:session): session opened for user nobody by (uid=0)
:39 app-1 su[21705]: ﬁuccessful su for nobody by Ioot]

139 app-1 su[21705]: + 22? root:i:mobody

$39% app-1 su[21705]: pam unix(su:session): session opened for user nobody by (uid=0)
:3% app-1 =su[21707]: ﬁuccessful su for nobody by Ioot,]

139 app-1 su[21707]: + 2?2?? root:nobody

:39 app-1 5u[21707]: pam unix(su:session): session opened for user nobody by (uid=0)
:45 app-1 sshd[21956]: Did not receive identification string from 122.165.9.200

:11 app-1 sshd[22596]: Did not receive identification string from 65.208.122.48

:28 app-1 sshd[23501]: for root from 188.131.23.37 port 4271 =ssh2
10 :28 app-1 sshd[23501]: subsystem regquest for sftp

101637 Apr 26 08:51:50 app-1 =shd[23542]: for root from 188.131.23.37 port 4280 ssh2
101681 Apr 26 09:12:36 app-1 =sshd[23542]: syslogin perform logout: logout({} returned an error

101749 Apr 26 09:35:14 app-1 sshd[23968]: [Bccepted password for [@ser]] from 208.80.69.70 port 33371 ssh2
101750 Apr 26 09:35:14 app-1 s5hd[23970]: pam unix(sshd:session): session opened for user by (uid=0})
131795 Bpr 26 09:48:33 app-1 sudo: : ITY=pts/1 ; PWD=/bin ; USER=root ; COMMAND=/bin/su -

:33 app-1 su[24157]: Successful su for root by root

:33 app-1 su[24157]: + pts/1 root:i:root

:21 app-1 sshd[23%68]: syslogin perform logout: logout () returned an error

:23 app-1 sshd[46€15]: Server listening on :: port 22.

131921 Bpr 28 07:34:58 app-1 login[5143]: FAILED LOGIN (1} on 'ttyl' FOR “faserl]]', Authentication failure
£

Highlighted 118 iterns, 16131 Total . 1521 displayed (100644 hidden). Il 102165 lines, longest is number 430,

:23 app-1 sshd[4€15]: error: Bind to port 22 om 0.0.0.0 failed: Address already in use.

>

— O
— s
Zoom Control
Start End Lines

] 102165

GO

Delimiter: 'a’ (0x61)

Which can be used in presentations to management and reports and is much better than simple text

excerpts.

You can also experiment with selecting a string (for example, a user or an IP address) and selecting
“Show only” — which filters out everything except the selected string. If you have one suspect this
allows to quickly narrow your view to just their actions, temporarily.

3. Now let’s repeat the filtering that with Notepad++

Why notepad++? Because analyzing logs with highlighter is easy, but it often breaks with exceptions
and errors and with very large files tends to die completely. Some things are better done in a more
stable program and there are a few very useful plugins for Notepad++ for log analysis.

Let’s open the same file in this program and see if we could repeat the same filtering with it.

Select a string you wish to filter out (altogether with the whole line it is on), press Ctrl+H:

Replace n

Find Replace FindinFiles Mark

Find what : | [e v | Find Next |
Replace with : | V| Replace
In selection Replace Al

Replace All in All Opened

Documents
Match whole word only

[Imatch case Close
Wrap around

Search Mode Direction Transparency

) Mormal Up (® On loging focus
(O Extended (0, ', \t, 0, ... (®) Down O Always

(®) Regular expression [_]. matches newline 1

Replace All: 13179 occurrences were replaced.

add .* before the string and .* after the string, so it would look like .*string.*, then select “Regular
expression” and click Replace All. This will remove all lines containing your string, leaving an empty
line instead.

These blank lines can easily be removed using a Notepad++ plugin (if missing, install it with Plugin
manager): TextFX -> TextFX Edit -> Delete Blank Lines (select all text first).

4. Notepad++ color highlights

Next, we will use the guideline from https://dzone.com/articles/tip-using-notepad-read-log to create the
same colorful highlights as in Highlighter, but Better! Because we can have the highlights
automatically done for us, depending on keywords, every time we open the same type of log file,
without having to re-define them and re-highlight again.

The result:

https://dzone.com/articles/tip-using-notepad-read-log

S U U . P e — e e ceee R —I —emamm— ——mey
: TTY=pts/1 ; PWD=/home/dhg/eggdropl.6.19 ; USER=root ; COMMAND=/us
pam unix (sudo:=session): session opened for user by dhg {uid=0)
igatadd : TTY=pt=z/1 ; PBWD=/home/dhg/eggdropl.6.13 ; USER=root ; COMMAND=/u=s
pam unix{sudo:session): session opened for user by dhg {uid=0}
3440] : Accepted password for dhg from 190.166.87.1649 port 52422 =sh2
4442]: pam unix (sshd:session): sSession opened for user dhg by (uid=0)
4442] : subsystem request for sftp

4805] : BAccepted password for dhg from 190.166.87.1649 port 52812 =sh2
4807] : pam unix (sshd:session): session opened for user dhg by (uid=0)

6686] ¢ Accepted password for dhg from 190.166.87.1649 port 53460 =sh2
6696] : pam unix(sshd:session): session opened for user dhg by (uid=0)
6712]: Accepted password for from 121.11.66.70 port 33828 =sh2

6714]: pam unix(sshd:session): session opened for user by root (uid=0}
49] : Successful su for nobody by

The technique is especially useful for more complex logs (for example, when analyzing an MFT table
from a Windows operating system) and searching for multiple IOCs (indicators of compromise) —
highlighting key values on file opening and selecting your custom language (you can define separate
languages per log / file type) saves a ton of time.

Tools:
Mandiant Highlighter and Notepadd++

This research is supported by Award #1542465:
RET Site: Cyber Security Initiative for Nevada Teachers (CSINT)

	Introduction
	File in file using ADS
	Zone.Identifier
	ADS and PowerShell
	Cheatsheet

