
Hands-on Activity 1
Hashing:
A hash value is a numeric value of a fixed length that uniquely identifies data. Hash values represent
large amounts of data as much smaller numeric values, so they are used with digital signatures. You can
sign a hash value more efficiently than signing the larger value.

Here are the most common Hash Algorithms (though there are more)
• MD-5 (Message Digest 5 - 32 characters)
• SHA-1 (Secure Hash Algorithm - 40 characters)
• SHA-256 (Secure Hash Algorithm - 64 characters)

1) Artifacts can be compared using their HASH values.
2) If two (or more) documents, graphics, (artifacts) look similar when viewed , but when Hashed,

their HASH values are different, then are they identical?
3) They are not the same file (a single bit difference could cause this).
4) But will the courts “still say” they are “ A reasonable representation of each other?”

Activity:
Open notepad and create the following text files.
File Name Contents

text1.txt “the quick brown fox jumped over the lazy dogs back”

text2.txt “THE QUICK BROWN FOX JUMPED OVER THE LAZY DOGS BACK”
(typed in all caps)

text3.txt “the quick brown fox jumped over the lazy dogs back ”
(spaces added at end of sentence).

text4.txt “The quick brown fox jumped over the lazy dogs back”
(first letter of the first word in upper case).

Text4 renamed.txt “The quick brown fox jumped over the lazy dogs back”
File renamed and saved text4.txt to test4 renamed.txt

Tools:
There are numerous applications that can calculate hash values. We used HashMyFiles which can be
downloaded at https://www.nirsoft.net/utils/hashmyfiles-x64.zip

https://www.nirsoft.net/utils/hashmyfiles-x64.zip

Hands-on Activity 2
Event Logs:
For introduction and activty see Event Log Slides(eventlogs.pdf)

Tools:
Windows Event Viewer which can be found by clicking the start button and search for event viewer.

Hand-on Activity 3(referenced from
https://hshrzd.wordpress.com/2016/03/19/introduction-to-
ads-alternate-data-streams/)
Alternate Data Streams

Introduction

In FAT file system – used by old versions of windows – file consisted of 2 elements: attributes and
data.

In NTFS it is different – file consists of attributes, security settings, main stream and alternate streams.
By default, only the main stream is visible.

Activity

Let’s see how it works by creating a sample file: test.txt. At this moment it’s main stream will be
empty. However, we will create an alternte data stream. We can write into it using echo command and
simple stream redirection.
Naming convention:
[filename.extension]:[alternate_stream_name]

optionally we can use ::$DATA at the end, i.e:
[filename.extension]:[alternate_stream_name]::$DATA

echo This message is saved in the ADS > test.txt:hidden_stream
Let’s list the directory and see the newly created file (test.txt)

dir

As we can notice, the file length is displayed as 0 bytes. If we try to open this file by some text editor
(i.e notepad) we can see that it is empty. Does it really have something inside? Let’s confirm:

more < test.txt:hidden_stream

Now, finally, our text showed up.

So, how we will find out what are the alternate data streams available in particular files? There are
several tools dedicated to reading and editing ADS, but if we don’t want to bother about it, we can just
use a command dir, with an appropriate parameter:

dir /R – display alternate data streams of the file

Now we can see the same file, test.txt, listed twice: once with a size 0, and then again – with the size
35, with the ADS name added.

We can edit the file in a normal way, and the alternative stream will stay untouched. By the same way
we can create several streams.

File in file using ADS

Example 1

We can also hide another file on the alternate data stream. On the below example – we create a new txt
file on another. We can then edit it with typical tools:

Yet, opening the file by default way, we can only see it’s main stream:

Example 2

We can also paste an existing file on an alternate data stream, by using a command type

Let’s take as an example a demo.dll – it is a 32bit Portable Executable, exporting one function: Test1.
We will place it in the alternate stream of test.txt

type demo.dll > test.txt:demo

Maybe the alternate stream it is hard to notice – but running it is still very easy:

rundll32 test.txt:demo,Test1

Example 3
Exactly the same can be done with (malicious) macros:

type malware.vbs > readme.txt:malware.vbs

https://github.com/hasherezade/snippets/tree/master/demo_dll

Wscript readme.txt:malware.vbs

Zone.Identifier

One of the legitimate usages of alternate data streams is Zone.Identifier. It is a feature used to identify
the file origin. In case if the file comes from some untrusted source, i.e. have been downloaded from
the internet, Windows displays a security warning before it can be run.

There are several variants of Zone.Identifier value:

0 My Computer
1 Local Intranet Zone
2 Trusted sites Zone
3 Internet Zone
4 Restricted Sites Zone

file.exe:Zone.Identifier

Sample content of Zone.Identifier of the file downloaded from the internet:

[ZoneTransfer]
ZoneId=3

Malware downloaders may edit Zone.Identifier of the downloaded file, in order to make it run without
displaying alert.

ADS and PowerShell

PowerShell comes with a built-in feature to read ADS. There are several commands that can be used to
read and edit them:

• Get-Item
• Set-Item
• Remove-Item
• Add-Content
• Get-Content
• Set-Content

Examples

Listing all the streams of a file:

Get-Item -Path [filename] -Stream *

Adding hidden message into ADS:

Add-Content -Path [filename] -Value [my hidden message] -Stream [new_stream]

Cheatsheet

Creating ADS from commandline:

echo This is a hidden message > testfile.txt:hidden_stream

Displaying files with their alternative data streams:

dir /r

Displaying stream of a file:

more < testfile.txt:hidden_stream::$DATA

Tools:
Windows command prompt, notepad, and powershell.

Hands-on Activity 4
Log Parsing
For log parsing I just have the students work through the tutorial located at
https://www.linkedin.com/pulse/7-log-analysis-techniques-digital-forensics-incident-sverdlov/

I figure that it explains the process fairly well. Below I have included the method utilizing both
Mandiant Highlighter and Notepad++(Note Mandiant does require registration to download, but I do
believe it is still free).

Logs can be huge – and analyzing a 500MB or even a 1-2 GB log file can quickly get daunting and
tiring. Going through such a file to find a single instance of the right command which got your server
compromised could be an all-nighter. Let’s make it 15-45 min., shall we?

Let’s first set up our task:

Head over to https://honeynet.org/challenges/2010_5_log_mysteries and download some logs.
Specifically, the file located at https://honeynet.org/sites/default/files/files/sanitized_log.zip . Following
the challenge, we will complete it in several programs utilizing a few useful filtering techniques. If you
disagree with me or have suggestions, feel free to post them in the contact form on my website – I will
be happy to amend my article or reply with my thoughts.

Extract the archive and look around.

https://honeynet.org/sites/default/files/files/sanitized_log.zip
https://honeynet.org/challenges/2010_5_log_mysteries
https://www.linkedin.com/pulse/7-log-analysis-techniques-digital-forensics-incident-sverdlov/

From the list we could see immediately the log which could interest us – auth.log

Our objective will be to answer the challenge’s questions with the programs below.

For our exercise, we will need:

1. Notepad++
2. LogExpert

1. Quick Filtering with Mandiant Highlighter

I hope Mandiant (FireEye) keeps this tool, if not updated (gosh, they have not updated it in ages!), at
least online for long enough for a sane developer to develop something modern and at least as useful
and much more stable. From the frequent crashes I’ve experienced with it I would only recommend it
for files less than 100MB in size. Anything bigger and some complex tasks simply kill the program.
Yes, it can open huge files – but opening is one thing, complex filtering is another.

https://logexpert.codeplex.com/
https://notepad-plus-plus.org/

On opening the auth.log file with Highlighter we see it contains 102165 lines. Not realistic for reading
the whole thing, so let’s get rid of the lines we don’t want to see.

We accomplish this by glancing over the file, scrolling from top to bottom and noting any lines which
are frequent and useless at the same time. For example, we would be interested statistically in what
usernames were attempted to login to ssh, but if they were invalid they pose no interest to us. So we
could search for “Invalid user“, select the 2 words, right-click and select “Remove” which would
remove all lines containing them. This removes roughly 13 000 lines, or more than 10%. We can do the
same for “Failed password for invalid user“, ” authentication failure”, (so far 50% of the log file has
been filtered out), “user unknown”, “check pass; user unknow”, “Failed password for root from“,
” Failed password for”, ” session closed for user” (because we might not be interested in logouts as
much as in logins, right?). Even so, we see a line containing “session opened for user root” – and we
might be more interested in “Accepted password”, instead – so we remove even the session opened
lines.

One more string to remove is “POSSIBLE BREAK-IN ATTEMPT!” – this alert sounds scary but is not
very helpful in identifying actual breaches, unless we see a successful login attempt from the same IP
later on (which is a part of a deeper statistical analysis).

2. We are left with a whopping 1747 lines!

All that in just a few seconds of filtering. Neat, especially knowing that we can reclaim any lines
removed from the GUI (right click, Line operations – reclaim lines previously removed).

The remaining line allow us to build a timeline of events and the commands used to compromise the
server and answer all questions in the challenge above.

That is with just one function of Highlighter – “Remove”! Let’s not forget we can highlight different
things with different colors to make our analysis easier:

For example, we see a lot of instances of commands and actions from “user1”. We go to Keyword,
enter user 1, select “cumulative”, “Case insensitive”, change the color to a distinctive one, press
“Highlight”, voila!

We can do the same for “Successful su for nobody by root”, “Successful su for www-data by root”,
“Successful su for www-data by root” (3 hits), “Accepted password” (with a RED color and we found
118 hits), rinse and repeat for all strings which pose interest and would help us solve the puzzle.

The final window should look something like:

Which can be used in presentations to management and reports and is much better than simple text
excerpts.

You can also experiment with selecting a string (for example, a user or an IP address) and selecting
“Show only” – which filters out everything except the selected string. If you have one suspect this
allows to quickly narrow your view to just their actions, temporarily.

3. Now let’s repeat the filtering that with Notepad++

Why notepad++? Because analyzing logs with highlighter is easy, but it often breaks with exceptions
and errors and with very large files tends to die completely. Some things are better done in a more
stable program and there are a few very useful plugins for Notepad++ for log analysis.

Let’s open the same file in this program and see if we could repeat the same filtering with it.

Select a string you wish to filter out (altogether with the whole line it is on), press Ctrl+H:

add .* before the string and .* after the string, so it would look like .*string.*, then select “Regular
expression” and click Replace All. This will remove all lines containing your string, leaving an empty
line instead.

These blank lines can easily be removed using a Notepad++ plugin (if missing, install it with Plugin
manager): TextFX -> TextFX Edit -> Delete Blank Lines (select all text first).

4. Notepad++ color highlights

Next, we will use the guideline from https://dzone.com/articles/tip-using-notepad-read-log to create the
same colorful highlights as in Highlighter, but Better! Because we can have the highlights
automatically done for us, depending on keywords, every time we open the same type of log file,
without having to re-define them and re-highlight again.

The result:

https://dzone.com/articles/tip-using-notepad-read-log

The technique is especially useful for more complex logs (for example, when analyzing an MFT table
from a Windows operating system) and searching for multiple IOCs (indicators of compromise) –
highlighting key values on file opening and selecting your custom language (you can define separate
languages per log / file type) saves a ton of time.

Tools:
Mandiant Highlighter and Notepadd++

	Introduction
	File in file using ADS
	Zone.Identifier
	ADS and PowerShell
	Cheatsheet

